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The biharmonic equation transformed in the computational domain is solved for the 
generation of boundary-orthogonal curvilinear coordinate systems. The method permits direct 
and complete control of the mesh point location on the boundary as well as the angle of inter- 
section of the coordinate lines with the boundary. The method may also be used for the 
generation of meshes in segmented fields. Finally, the method can be easily extended in three 
dimensions. 0 1985 Academic Press, Inc. 

INTRODUCTION 

In the last decade, an extensive array of boundary-fitted coordinate system 
generation techniques have been developed for the solution of physical problems 
described by partial differential equations in domains with complicated boundaries. 
A very extensive review of these methods has been recently compiled by Thompson, 
Warsi, and Mastin in Ref. [l]. 

Since the generation of the boundary-fitted coordinate system has no physical 
meaning in relation to the problem considered, there is a freedom of choice on the 
coordinate system generation procedure. 

The great majority of the coordinate system generation methods are based on 
partial differential equations involving the Laplace operator. These equations are 
usually solved using a coordinate transformation from the physical domain to an 
orthogonal computational domain. Using this approach, local refinement of the 
mesh can be achieved by introducing appropriate mesh control functions into the 
generating system of equations, or by giving nonzero values to the Laplacian of the 
curvilinear coordinates. This is the original approach pioneered by Thompson, 
Thames, and Mastin in Ref. [2], where the governing system is composed by two 
Poisson equations. 

Special attention has been given to methods that would generate orthogonal cur- 
vilinear coordinate systems, due to the simplicity of the expression of the partial dif- 
ferential equations in these coordinate systems. Also, depending on the actual 
physical problem to be solved on the boundary-fitted coordinate system, 
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orthogonal systems may simplify considerably the application of the boundary con- 
ditions. The methods of orthogonal or or nearly orthogonal curvilinear coordinate 
system generation can be based on the solution of equations involving elliptic or 
hyperbolic operators (Ref. Cl]). The nature of these operators indicates that elliptic 
operators should be more appropriate for closed domains, whereas hyperbolic 
operators should be used for open domains as isolated bodies, etc. Another 
interesting approach is the USC of parabolic operators as proposed by Nakamura in 
Ref. [3]. 

A basic problem that arises with the use of hyperbolic generating operators is the 
propagation of mesh nonuniformities originating from geometric singularities at the 
domain boundaries. Similar effects are not present with elliptic operator methods 
due to the diffusive nature of these equations. On the other hand, the most com- 
monly used Laplace’s operator demonstrates a lack of complete control of the 
mesh, due to the nature of the boundary conditions appropriate for the solution of 
second-order elliptic operators. It is well known that the appropriate boundary con- 
ditions for the Laplace or the Poisson equations are the definition of the function or 
its normal derivative, or a linear combination of both on the boundary, namely, the 
Dirichlet, the Neumann, and the mixed condition, respectively. 

Generally, if one applies a Laplace operator-based coordinate system generation 
procedure, on the domain boundaries he may specify either the location of the mesh 
points, or the angle with which each family of coordinate lines will meet the boun- 
dary. In the case where an orthogonal system is desired, the angle of the coordinate 
lines on the boundary must be specified as 90”, and this condition deprives us, in 
principle, of the complete control of the mesh spacing. The general behavior of 
coordinate lines generated by the Laplace equation with Neumann boundary con- 
ditions is to concentrate near convex corners, and disperse near concave. To 
illustrate these effects the following field presented in Fig. 1 was examined. Fields 
with similar geometry are very common in two-dimensional cascade flows. In this 
case, the lines BC, GF describe the upper and lower surface of a blade considered as 
a flat plate for simplicity. An infinite series of these blades forms the 2-D cascade. 
To solve an inviscid flow problem in this domain, one has to apply periodic con- 
ditions on the segments AB, CD, HG, FE, the appropriate inlet and exit conditions 
on the segments AH, DE, and, finally, the condition U, =0 on the segnients BC, 
GF, where U, is the normal velocity component on the blade surface. The 
application of the periodic conditions on the segments AB, HG and CD, FE would 
be simplified if there is a one-to-one correspondence of the mesh points on these 
segments to avoid interpolation. 

Similarly, the b.c. on the blade surfaces BC, GF could be simplified if the coor- 
dinate lines were normal to these segments. Three curvilinear coordinate systems 
were generated by solving the transformed Laplace equation in the orthogonal 
domain A’B’C’D’E’F’G’H’ with appropriate b.c., following the method introduced 
by Thompson, Thames, and Mastin in Ref. [2]. In the first case, Dirichlet con- 
ditions are applied on AB, BC, CD, HG, GF, FE: and the resulting coordinate 
system is presented in Fig. 2. In the second case presented in Fig. 3. Neumann con- 



BOUNDARY-ORTHOGONAL COORDINATE SYSTEMS 447 

FIG. 1. A 2-D cascade. (a) Physical domain. (b) Transformed domain. 

FIG. 2. The curvilinear system generated by the Laplace equation with Dirichlet conditions on AH, 
BC, CD, HG, GF, FE and Neumann conditions on AH, DE for the 2-D cascade. 
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FIG. 3. The orthogonal system generated by the Laplace equation with Neumann conditions on all 
boundaries for the 2-D cascade. 

ditions are applied on these segments. Finally, in the third case presented in Fig. 4, 
Dirichlet conditions are applied on AB, CD, HG, FE and Neumann conditions on 
BC, GF. 

In all three cases, Neumann conditions are applied on the segments AH, DE. 
From these illustrations it is clear that the mesh of Fig. 2 is appropriate for the 
application of the symmetry condition, but does not simplify the normal velocity 
condition on BC, GF. Reverse results are obtained with the Neumann condition as 
indicated in Fig. 3 yet the mesh is orthogonal. Finally, the mesh presented in Fig. 4 

FIG. 4. The curvilinear system generated by the Laplace equation with Dirichlet conditions on AB, 
CD, HG, FE and Neumann conditions on AH, DE, BC, GF for the 2-D cascade. 
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is appropriate for the application of all the bc., nevertheless, it is nonorthogonal. A 
common characteristic of all these Laplace-based meshes is the existence of large 
mesh density variations between the regions in the neighborhood of the corners 
B, F and C, G. To rectify the mesh distribution one has to abandon the simplicity of 
the Laplace equation and use one of the mesh stretching techniques of Ref. [ 11, for 
example, the solution of the Poisson equation with appropriate source terms. In 
this case, the generated curvilinear coordinate system will not be orthogonal in 
general. To accomplish a simultaneous control of the mesh density distribution and 
the angle of intersection of the coordinate lines with the boundaries one has to 
resort to more complicated methods, for example, the Sorenson and Stegcr method 
of Ref. [4]. The basic idea of this approach is to iteratively adjust the source term 
of the Poisson equation to control simultaneously the mesh density and the skew- 
ness at the boundary surfaces. In this way, we indirectly bypass the boundary con- 
dition limitations of second-order elliptic operators posed earlier. As we will 
demonstrate, this approach has a lot in common with the biharmonic mesh 
generation method presently proposed. The biharmonic operator V’(V) appears as 
a natural choice for a curvilinear coordinate system generation method, since it 
may be readily reduced to a combination of a Poisson and a Laplace equation for 
which the solution method in the transformed space is well developed. The higher 
order of the biharmonic operator allows the simultaneous application of the boun- 
dary conditions on both the function and its derivative. In this way, we may 
prescribe both the location of the mesh points and the angle of intersection of the 
coordinate lines with the boundary, generating a coordinate system that is 
orthogonal on the boundaries and has the desired mesh distribution. 

The biharmonic equation is solved numerically cithcr by the direct or by the 
coupled approach. In the first case a 13-point finite difference approximation is nor- 
mally used as described by Gupta and Mahonar [IS]. This approach applied in the 
case of a coordinate system generation would require the solution of the transfor- 
med biharmonic equation in the transformed domain <, il. On the contrary, the 
coupled approach basically splits the biharmonic equation 

into two equations, namely, 

Acp=p, Ap=O, 

that can be easily transformed and solved in the transformed domain of 5,~~ using 
the familiar Thompson method [23, requiring only minor modifications on 
previously existing codes based on the solution of the Laplace and Poisson 
equations. This simpler approach will be follotied in the present paper. The 
splitting of the biharmonic equation into a Poisson and a Laplace equation 
demonstrates the similarity of the present method with the method of Ref. [4]. 
Here, the function p = p(x, y) that satisfies the Laplacc equation Ap = 0 plays the 
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role of the iteratively adjusted source term of the Poisson equation used as 
generating equation in Ref. [4]. From this discussion it is clear that the biharmonic 
equation allows a strict and direct control of the mesh density and skewness on the 
boundaries. 

The biharmonic equation has also been used as a mesh generating equation by 
Bell, Shubin, and Stephens in Refs. [6, 7). In this case, a system of biharmonic 
equations is solved in the computational domain for the physical coordinates x, y, 
namely, 

and 

d4Y Z4Y +(iJyzo 
(i,‘4+2 

pp r?q4 . c. 

It should be noted that there is no extremum principle for this system of equations, 
and consequently, it is possible to lose the invertibility of the transformation from 
the transform to the physical domain. 

The presently proposed approach is to solve the biharmonic equations 

” 
c+2 (s4r 
2X4 

+%=. 
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transformed in the computational domain <, Q-, and thereby retaining the desirable 
extrcmum principle that is necessary for the transformation inversion. 

BIHARMONK EQUATION 

Consider the Dirichlet problem for the biharmonic equation 

Aff4e% Y) = 0, (x, Y)ER 

cp(x, v)=.l‘(x, Y)% $ (x, y) = 0. (x3 Y)EC 

(1) 

(2) 

where R is a closed domain in two dimensions and C is its boundary. The 
derivative d/h is taken in the outward normal direction on the boundary C. 

The biharmonic equation may be split into the couple of equations 

Ad-G Y) = Ax, Yh (x> Y)ER (3) 
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and 

dPb-6 Y I= 0, (x, Y) f R. 

The boundary values of cp, p should satisfy the conditions 

cp(“% Y) =fk Yh (XT Y)CC 

and 

(4) 

(5) 

LI 

P(x,Y)=d~(x,Y)-c~(~~,Y). (XT Y) E c (6) 

where c is an arbitrary nonzero constant (Ref. [S]). 
To generate a curvilinear coordinate system by using the biharmonic equation, 

one has to solve the set of partial differential equations 

M(x, Y) = 0 

LlLlq(x, y) = 0. 

Applying the coupled approach, this set can yield the system of equations 

(7) 

(8) 

N(x, Y) = P 

dp(x, y) = 0 

4(x, Y) = 4 

4(x, Y) = 0. 

With the dependent and independent variables interchanged, Eqs. (Y), (lo), (I l), 
(12) in the transformed plane become 

ctx<< - 2/3x;, + yxvq = A”( px< + qxv) (13) 

XY,, - 2bY<q + YYqq = -J2(PY, + 4)‘11) (14) 

where z=x;+y;, p=~~,~~+y~y~, y=x:+y$ J=xcy,-ytx,, from the trans- 
form of Eqs. (9) (1 I), and 

rp:< - 2DPps, + :lPIJs = 0 

q,c - m:, + 79sq = 0 

(15) 

(16) 

from the transformation of Eqs. (IO), ( 12). 
The boundary conditions for Eqs. (13), (14) are 

x=x(5, II), Y = Y(L rl) on C’, i.e., on a’h’c’d’u’ 
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FIG. 5. A simply connected domain. (a) Physical domain. (b) Transformed domain. 

as illustrated in Fig. 5, to generate a coordinate system that would have coordinate 
lines passing through given mesh points on the boundary C. 

The boundary conditions for Eqs. (15), (16) are considerably more complex. If 
we solve Eqs. (13), (14) with respect to p, q we obtain 

x<p+xqq= -&?x:< - v-% -k yx,,) = Bx 

Y,P+Y,q= --$Y:, - WY<,, + YY,,) = 9Y 

and finally 

p=(.y,@x-x,.SY)/J 

y = (X< 9y - y< 52x)/J. 

(17) 

(18) 
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However, 

p=A& q=Atj. (19) 

Therefore, for the boundary conditions of Eqs. (IS), (16) we obtain according to 
Eq. (6) 

or using Eqs. (17) (lg), (19), 

? 
q = (x; (2y - .)‘< 9x)/J - (‘ y 

dn 
on h’a’, c’d’. (231 

The effect of the arbitrary constant c on the orthogonality of the coordinate lines on 
the boundaries requires some additional clarification. In the interior of the domain 
p, q satisfy Eqs. (19), whereas at the boundary the conditions for p, q arc posed by 
Eqs. (20), (21). As the computation approchcs convergence. the values of p, q on 
the boundaries tend to the final values of At, All, respectively. Therefore, Eqs. (20), 
(21) tend to obtain the form 

i.e., the lines < = const, q = const tend to become normal to the corresponding 
boundaries. 

In the present computations the value of the arbitrary constant c was taken equal 
to 1 in Eqs. (22), (23) after a number of trials. Theoretically, any nonzero value of c 
is acceptable, however, from the numerical point of view, only values of O(1) 
should be used. Actually, if a large value of c is used, the term c(&pjZn) in Eq. (6) 
would dominate over the term ~Iq(x, v). In this case on the boundary 

4 
P(X, .Yk=C~ 

violating strongly Eq. (3). Numerical experiments with a value c = 10 fail to con- 
verge. On the other hand, computations using the value c = 2 converged to the 
same mesh as with c = 1. 
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The application of the boundary conditions (22), (23) for p, q presents the 
problem that the evaluation of some of the derivatives on the boundaries using cen- 
tered differences would require the use of dummy points. A plausible procedure 
estimating dt, dy is to use the interior points, as proposed by Ehrlich and Gupta in 
Ref. [9]. This procedure may give first- or second-order accuracy, depending on the 
number of interior points used in the interpolation formulae. 

In the present computation, this approach was considered complicated, and 
instead of computing d& dq on the boundary, the Laplacians of <, q were evaluated 
at the next interior row of mesh points, and the values obtained were used on the 
boundary. This rough estimate worked very well, and no stability or convergence 
problems were noted. 

The system of Eqs. (13), (14), (15), (16) may be solved by SOR iteration, starting 
from an initial arbitrary mesh generated by interpolation between the known boun- 
dary point coordinates. Using the initial values of X, y, the initial values of p, q can 
be computed at the interior points by the application of Eqs. (17), (18). On the 
boundary points, the values of p, q are computed using Eqs. (22), (23) with d<, dy 
estimated on the next row of points at the interior of the domain. The initial values 
of x, y, p, q are then introduced in Eqs. (13), (14), (15), (16) to generate improved 
values of x, y, p, q. This procedure can be repeated until a satisfactory degree of 
convergence is achieved. To simplify the solution of Eqs. (13), (14), (15), (16), one 
may omit the mixed derivative terms xCrl, yeV, pg,, qell, since the coefficient 
P=XcXtl+YCYe is zero for an orthogonal mesh. The coordinate systems generated 
by the biharmonic equation are not generally orthogonal, however, in all cases 
tested there was no noticeable alteration of the mesh caused by this omission. 

The biharmonic equation allows in general an arbitrary distribution of mesh 
points on the domain boundaries. Since any solution of the Laplace equation 
satisfies the biharmonic equation as well, it is possible that, given an appropriate 
domain and mesh distribution on the boundaries, the resulting curvilinear coor- 
dinate system by the biharmonic approach will be orthogonal not only on the 
boundary lines, but also at the interior of the field. Similar effects are presently 
under investigation. 

Another effect that is related to the mesh distribution on the boundaries is the 
dependence of the mesh skewness on the mesh density distribution. This 
interrelation is evident in Eqs. (20), (21), which relate the mesh distribution in the 
form of d<, dr], with the normal derivatives a&‘+, dt@, on the boundaries. In all 
cases tested, if the mesh density distribution was smooth on the boundaries, the 
resulting coordinate system has been orthogonal to the domain boundaries. 
However, if the mesh distribution exhibits strong nonuniformities, then the skew- 
ness of the mesh is affected in the neighborhood of these singularities, resulting in a 
locally nonorthogonal mesh on the domain boundaries. This effect will be examined 
further in the next section. 
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COYIWTER CODE AND APPLICATJONS 

For the application of the present method to generate boundary-orthogonal cur- 
vilinear coordinate systems, a computer program has been compiled in BASIC to 
be used in both computers and minicomputers. This choice was dictated by the fact 
that presently minicomputers are used extensively for the solution of engineering 
and design problems. The BASIC language used in these units is enhanced with 
powerful graphic commands that may simplify considerably the task of plot 
generation on a CRT display or a plotter. This feature is very useful in the case of 
coordinate system generation. The main disadvantage of minicomputers, their 
limited computational speed, is usually outwcighcd by their minimal cost of CPU 
time, the ease of operation, and their availability. 

In the present examples the computation has been carried out on a desktop com- 
puter HP-87XM connected to an HP-7225A plotter. Typical runs required several 
hours of CPU time for convergence. The same computation performed on a full- 
scale computer would require considerably less CPU time by several orders of 
magnitude. 

In general, the biharmonic equation converges less rapidly than the Laplace or 
the Poisson equation. Comparative studies indicated that the proposed biharmonic 
method has roughly more than twice the CPU time requirements of the original 
Thompson, Thames. and Mastin procedure solving the Poisson equation. 

The code was used for the generation of boundary-orthogonal curvilinear systems 
in a number of domains of engineering interest. 

Figure 6 presents the curvilinear coordinate system gcneratcd by the biharmonic 
equation in the case of a trapezoid wedge to be used in connection with a stress 
analysis problem. 

In this coordinate system, the lines S; = const are normal to the boundary 
segments AR, DC and pass through given points. Similarly the lines 4 = const are 

FIG. 6. A boundary-orthogonal coordinate system for a wedge generated b> the hiharmonic 

equation. 



456 PANAGIOTIS DEMETRIWJ SPARIS 

normal to the segments AD, BC and pass through given points. The mesh point dis- 
tribution on AB, BC has uniform density. On these segments, the corresponding 
coordinate lines arc normal with a high degree of accuracy, with the notable excep- 
tion of the neighborhood of point A, where the orthogonality of the mesh is not 
well resolved due to the effect of the acute angle at A. Similar problems are not 
present at B, C, where the corresponding boundaries intersect at a right angle. 

On the segments AD, DC, the mesh distribution is nonuniform. As a result of 
these nonuniformities, the corresponding coordinate lines exhibit small deviations 
from the normal direction. 

FIG. 7. A boundary-orthogonal coordinate system for a quadrilateral. (a) Uniform boundary mesh 
density. (b) Nonuniform boundary mesh density. 
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To illustrate further these cffccts, the following model problem was examined. In 
the quadrilateral domain ABCD of Fig. 7: two coordinate systems have been 
generated with a uniform (Fig. 7a) and with a nonuniform (Fig. 7b) boundary mesh 
point distribution. From thcsc results it is clear that due to the coupling of the 
orthogonahty condition with the mesh point distribution caused by the application 
of the boundary conditions (20): (21), the direction of the coordinate lines deviates 
from the normal at boundaries whcrc there are strong mesh point nonuniformitics, 
namely. on AB. AD. These effects arc not caused by a certain lack of convergence. 
The corresponding meshes have converged to within plotter pen thickness. with an 
error (2 < 10 .‘. 

In Fig. 8, a boundary-orthogonal curvilinear coordinate system is gcncrated by 
the biharmonic approach for a 2-D cascade. Comparing this coordinate system with 
the coordinate systems generated by the solution of Laplace equation. illustrated in 
Figs. 2. 3: and 4. we observe that the greater control over the coordinate lines affor- 
ded by the biharmonic equation has formed a mesh more suitable for the 
application of the boundary conditions on the blade surfaces BC‘. GF and on the 
symmetry lines AB? CD. MG, I;‘E. This mesh also presents a greater degree of 
uniformity, compared to the grids in Figs. 3 and 4. Small truncaton errors on the 
description of the blade surfaces HC‘, GF do not seriously affect the smoothness of 
the mesh. On the other hand, the presence of abrupt mesh density variations on 
AI/, ED create small deviations of the coordinate lines from the normal direction. 

In Fig. 9: the curvilinear coordinate system generated by the biharmonic equation 
for a generator pole is presented. This mesh has been used for the solution of a heat 
transfer problem. The application of the boundary conditions for the heat equation 

FIG. 8. A boundary-orthogonal coordinate system for a 2-D cascade generated bq’ the hiharmonic 

equation. 

5FI 61 3-X 
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FIG. 9. A boundary-orthogonal coordinate system for a generator pole generated by the biharmonic 
equation. 

on the surfaces where heat transfer takes place can be simplified with the use of a 
boundary-orthogonal mesh. In this case, the coordinate system is generated only for 
the right half of the pole section due to the symmetry. 

4. Metal-Clad Cables 

In Fig. 10 the boundary-orthogonal coordinate system in the interior of the 
metal-clad high-tension cable is presented. This coordinate system is used for the 
solution of the electrostatic field within the cable. In this case due to the symmetry 
of the field, the coordinate system needs to cover only one-sixth of the domain. 

5. Stress Concentration Specimen 

The proposed method for boundary-orthogonal curvilinear coordinate system 
generation using the biharmonic equation may be easily applied also in the case of 
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FIG. 10. A boundary-orthogonal coordinate system for a metal-clad cable generated by the bihar- 
manic equation. 

multiconnected domains. In this case, as presented in Fig. 1 I, the domain may be 
“unfolded” using the cut C, = C,. To illustrate the use of the biharmonic for mul- 
ticonnected domains, the field presented in Fig. 12a was examined. 

This curvilinear coordinate system will be used for the analysis of the stress con- 
centration caused by the presence of the hole in the tension specimen. To unfold the 
domain, the cut AH z FG was considered. This cut is an artificial boundary of the 
domain. and the values of x, y, p, y must be computed with the same code as any 
other interior point of the field. 

The specific coordinate system generated by the present method, illustrated in 
Fig. 12a, exhibits a somewhat confusing spiral effect. This effect is a result of the 
particular mesh point distribution on the boundaries that poses strict control over 
the coordinate lines. Thus, for example, the points I, K must be connected with a 
coordinate line normal to the circle and to the boundary CD. 

To reduce the extent of similar distortions, one may choose a more symmetric 
mesh point distribution on the boundaries that would take into account partial 
symmetries existing in an asymmetric domain. 

In the present example, if one arranges the mesh points on the exterior boundary 
ABCDEF so that point K lies on the direction AHI, then the resulting mesh would 
be more appealing (Fig. 12b). 

We should also point out that, although the number of grid points are reduced 
from 51 x 11 to 46 x 11, the coordinate lines deviate less from the normal direction 
on the boundary ABCDEF in the case of the pseudosymmetric mesh. 
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(a) 
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I 

FIG. 11. A multiconncctcd domain. (a) Physical domain. (b) Transformed domain. 
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b 

FIG 12. A boundary-orthoeonal coordinate s)stem for a borcti tension spccimcn generated h! tix 

hiharmonic equation. (a) IInifoim boundary mesh density. (b) t’seados?mmctx mesh. 

COU(YL.LjSIOSS 

The present paper presents a new method of boundary-fitted curvilinear coor- 
dinatc system generation. This method uses the biharmonic operator to generate a 
coordinate system with a prcdcscribcd mesh point distribution on the domain 
boundary. This coordinate system has coordinate lines that arc normal to the 
domain boundary. This boundary-orthogonal coordinate system gcncrally simplifies 
the application of boundary conditions expressed in the normal direction to the 
field boundary. The solution of the biharmonic equation is accomplished by the 
coupled approach that splits the problem into the solution of a Poisson and d 
Laplace equation. The solution of these equations is carried out in the transformed 
domain in a similar manner with the well-established methods of boundary-fitted 
coordinate system generation based on the Laplace operator, and thus retains the 
cxtremum principle. The proposed method may be used for coordinate system 
generation in simple- or multiple-connected regions in two or three dimensions. 
Three-dimensional coordinate system generation codes are presently under develop- 
ment at the Democritus University of Thrace. 
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The results indicate that, if the grid point distribution on the domain boundaries 
is relatively smooth, then the coordinate lines satisfy with suffkient accuracy the 
orthogonality condition, within the limits of the mesh resolution. In the case of 
fields with complicated geometry, the biharmonic approach allows segmentation of 
the domain, i.e., one may divide the field into simpler geometrical schemes, for 
example, quadrilaterals and triangles generate the corresponding coordinate 
systems, and finally patch the solutions of the subdomains to obtain the global 
coordinate system for the whole field. This procedure has a great deal in common 
with the generation of finite elements, and can be accomplished with the bihar- 
manic equation approach, since it would require continuity not only of the coor- 
dinate lines, but also of their derivatives at the points of patching. 
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